常用的三角函数诱导公式 三角函数的公式_教学资源|题库|学习文库-「普洱教育」

主页 > 公式大全 > 正文

常用的三角函数诱导公式 三角函数的公式

教学资源|题库|学习文库-「普洱教育」来源: https://www.puerjy.cn 2020-02-09 03:25公式大全 166262 ℃
三角函数的公式
常用的诱导公式 公式一 设α为任意角,终边相同的角的同一三角函数的值相等:对于x轴正半轴为起点轴而言 弧度制下的角的表示: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) sec(2kπ+α)=secα (k∈Z) csc(2kπ+α)=cscα (k∈Z) 角度制下的角的表示: sin (α+k·360°)=sinα(k∈Z) cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z) 公式二 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:对于x轴负半轴为起点轴而言 弧度制下的角的表示: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 角度制下的角的表示: sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanα cot(180°+α)=cotα sec(180°+α)=-secα csc(180°+α)=-cscα 公式三 任意角αsin(-αtan(-αsec(-α公式四 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: 与 -α的三角函数值之间的关系: )=-sinα cos(-α)=cosα )=-tanα cot(-α)=-cotα )=secα csc (-α)=-cscα 弧度制下的角的表示: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 角度制下的角的表示: sin(180)sin cos(180°-α)=-cosα tan(180°-α)=-tanα cot(180°-α)=-cotα sec(180°-α)=-secα csc(180°-α)=cscα[3] 公式五 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: 弧度制下的角的表示: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 角度制下的角的表示: sin(360°-α)=-sinα cos(360°-α)=cosα tan(360°-α)=-tanα cot(360°-α)=-cotα sec(360°-α)=secα csc(360°-α)=-cscα[3] 公式六 π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋) ⒈ π/2+α与α的三角函数值之间的关系 弧度制下的角的表示: sin(π/2+α)=cosα cos(π/2+α)=—sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα 角度制下的角的表示: sin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα cot(90°+α)=-tanα sec(90°+α)=-cscα csc(90°+α)=secα[3] ⒉ π/2-α与α的三角函数值之间的关系 弧度制下的角的表示: sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα 角度制下的角的表示: sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα cot (90°-α)=tanα sec (90°-α)=cscα csc (90°-α)=secα[3] ⒊ 3π/2+α与α的三角函数值之间的关系 弧度制下的角的表示: sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanαsec(3π/2+α)=cscα csc(3π/2+α)=-secα角度制下的角的表示: sin(270°+α)=-cosα cos(270°+α)=sinα tan(270°+α)=-cotα cot(270°+α)=-tanαsec(270°+α)=cscα csc(270°+α)=-secα⒋ 3π/2-α与α的三角函数值之间的关系[1-2] [3] 弧度制下的角的表示: sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα 角度制下的角的表示: sin(270°-α)=-cosα cos(270°-α)=-sinα tan(270°-α)=cotα cot(270°-α)=tanα sec(270°-α)=-cscα csc(270°-α)=-secα[3] 2诱导公式记忆编辑 奇变偶不变,符号看象限。 规律 公式一到公式五函数名未改变, 公式六函数名发生改变。 公式一到公式五可简记为:函数名不变,符号看象限。
即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。
[4] 上面这些诱导公式可以概括为: 三角公式的记忆图 对于kπ/2±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα[5] 纵变横不变符号看象限 举例(略) 记忆口诀 奇变偶不变,符号看象限。 注:奇变偶不变(对k而言,指k取奇数或偶数) 符号看象限(看原函数,同时可把α看成是锐角) 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的三角函数值都是“+”; 第二象限内只有正弦、余割是“+”,其余全部是“-”; 第三象限内只有正切、余切函数是“+”,其余函数是“-”; 第四象限内只有余弦、正割是“+”,其余全部是“-”。
三角函数的公式。
吴兴实验中学, 第二高级中学, 温州瓯海中学, 初中文言文, 初中数学评课稿,

Tags:

本文章来自网友上传,不代表本网站立场,转载请注明出处:https://www.puerjy.cn/69276.html
  • 站长推荐
热门标签