三角函数的诱导公式【六公式】 三角函数的公式_教学资源|题库|学习文库-「普洱教育」

主页 > 公式大全 > 正文

三角函数的诱导公式【六公式】 三角函数的公式

教学资源|题库|学习文库-「普洱教育」来源: https://www.puerjy.cn 2020-02-09 03:24公式大全 756595 ℃
三角函数的公式
用公式 诱导公式 折叠三角函数的诱导公式(六公式) 公式一: sin(α+k*2π)=sinα (k为整数) cos(α+k*2π)=cosα(k为整数) tan(α+k*2π)=tanα(k为整数) 公式二: sin(π+α) = -sinα cos(π+α) = -cosα tan(π+α)=tanα 公式三: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 公式四: sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα 公式五: sin(π/2-α) = cosα cos(π/2-α) =sinα 由于π/2+α=π-(π/2-α),由公式四和公式五可得 公式六: sin(π/2+α) = cosα cos(π/2+α) = -sinα 诱导公式 记背诀窍:奇变偶不变,符号看象限。[2] 或者也可以这样记:分变整不变,符号看象限。 和(差)角公式 折叠三角和公式 sin(α+β+γ)=sinα²cosβ²cosγ+cosα²sinβ²cosγ+cosα²cosβ²sinγ-sinα²sinβ²sinγ cos(α+β+γ)=cosα²cosβ²cosγ-cosα²sinβ²sinγ-sinα²cosβ²sinγ-sinα²sinβ²cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα²tanβ²tanγ)/(1-tanα²tanβ-tanβ²tanγ-tanα²tanγ) (α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ) 积化和差的四个公式 sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 和差化积的四个公式: sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 倍角公式 折叠sin(3a)→3sina-4sin^3a =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin^2a)+(1-2sin^2a)sina =3sina-4sin^3a cos3a→(2cos^2a-1)cosa-2(1-cos^2a)cosa =cos(2a+a) =cos2acosa-sin2asina =(2cos^2a-1)cosa-2(1-cos^2a)cosa =4cos^3a-3cosa sin3a→4sinasin(60°+a)sin(60°-a) =3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)-sina][(√3/2)+sina] =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2] =4sinasin(60°+a)sin(60°-a) cos3a→4cosacos(60°-a)cos(60°+a) =4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cosa-cos30°)(cosa+cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) tan3a→tanatan(60°-a)tan(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 三倍角 sin3α=3sinα-4sin^3 α=4sinα²sin(π/3+α)sin(π/3-α) cos3α=4cos^3 α-3cosα=4cosα²cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a ² tan(π/3+a)² tan(π/3-a) 其他多倍角 四倍角 sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角 sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角 sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=(-1+2*cosA)*(16*cosA^4-16*cosA^2+1) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6) 七倍角 sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角 sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角 sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8) 十倍角 sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) N倍角 根据棣莫弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>;比较两边的实部与虚部 实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i* 虚部:i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... … 对所有的自然数n: ⒈cos(nθ): 公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。
⒉sin(nθ): ⑴当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也 就是sinθ)表示。
⑵当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。
例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2) 特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 折叠我们通常把坡面的垂直高度h与水平宽度l的比叫做坡度(也叫坡比), 用字母i表示, 即i=h / l,坡度的一般形式写成l : m形式,如i=
1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么i=h/l=tan a. 半角公式万能公式6辅助角公式 注:该公式又称收缩公式 / 强提公式 / 化一公式 等 asin α+bcos α=√(a^2+b^2)sin(α+φ),其中tan φ=b/a asinA+bcosB=根号下a方+b方³(根号下a方+b方分之a³sinA+根号下a方+b方分之b³cosB) 令根号下a方+b方分之a=cosC 则根号下a方+b方分之b=sinC asinA+bcosB=根号下a方+b方(sinAcosC+cosBsinC)=根号下a方+b方³sin(A+C) 双曲函数 折叠h a = [e^a-e^(-a)]/2 ch a = [e^a+e^(-a)]/2 th a = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A²sin(ωt+θ)+ B²sin(ωt+φ) = √{(A+2ABcos(θ-φ)} ² sin{ωt + arcsin[ (A²sinθ+B²sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)}} √表示根号,包括{……}中的内容 反三角函数公式 折叠arcsin(-x)= -arcsinx arccos(-x)=π-arccosx arctan(-x)= -arctanx arccot(-x)=π-arccotx arcsinx+arccosx=arctanx+arccotx=π/2[1] 编辑本段 函数应用 折叠在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在海岛北偏东30,俯角为30的B处。
到11时10分又测得该船在岛北偏西60,俯角为60的C处。

(1)该船的航行速度是每小时多少千米。

(2)又经过一段时间后,船到达海岛正西方向的D处,此时船距岛A有多远。 解

(1)在Rt△PAB中,∠APB=60° PA=1,∴AB=√ 3(千米) 在Rt△PAC中,∠APC=30°,∴AC=√ 3/3(千米)在△ACB中,∠CAB=30°+60°=90°则BC=√ (AB)^2+(AC)^2=√ (√ 3/3)^2+(√ 3)^2=√ 30/3(√ 30/3)/(1/6)=2√ 30(千米/时)

(2)∠DAC=90°-60°=30°sinDCA=sin(180°-∠ACB)=sinACB=AB/BC=√ 3/√ 30/3=3√ 10/10sinCDA=sin(∠ACB-30°)=sinACB²cos30°-cosACB²sin30°=(3√ 3-1)√ 10/20在△ACD中,据正弦定理得,AD/sinDCA=AC/sinCDA∴AD=ACsinCDA 三角函数的公式。
小学生造句, 潞河中学, 北蔡中学, 防城港市高级中学, 三原县南郊中学,

Tags:

本文章来自网友上传,不代表本网站立场,转载请注明出处:https://www.puerjy.cn/69261.html
  • 站长推荐
热门标签