常用三角函数公式及口诀 三角函数的公式_教学资源|题库|学习文库-「普洱教育」

主页 > 公式大全 > 正文

常用三角函数公式及口诀 三角函数的公式

教学资源|题库|学习文库-「普洱教育」来源: https://www.puerjy.cn 2020-02-09 03:21公式大全 626347 ℃
三角函数的公式
常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: (2kπ+α)α (k∈Z) (2kπ+α)α (k∈Z) (2kπ+α)α (k∈Z) (2kπ+α)α (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: (π+α)α (π+α)α (π+α)α (π+α)α 公式三: 任意角α与 -α的三角函数值之间的关系: 1 / 10 (-α)α (-α)α (-α)α (-α)α 公式四: 利用公式二和公式三可以得到π-α与α间的关系: (π-α)α (π-α)α (π-α)α (π-α)α 公式五: 利用公式一和公式三可以得到2π-α与α间的关系: (2π-α)α (2π-α)α (2π-α)α (2π-α)α 2 / 10 的三角函数值之的三角函数值之 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: (π/2+α)α (π/2+α)α (π/2+α)α (π/2+α)α (π/2-α)α (π/2-α)α (π/2-α)α (π/2-α)α (3π/2+α)α (3π/2+α)α (3π/2+α)α (3π/2+α)α (3π/2-α)α (3π/2-α)α (3π/2-α)α 3 / 10 (3π/2-α)α (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即→→→,→. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: (2π-α)(4·π/2-α),4为偶数,所以取α。 当α是锐角时,2π-α∈(270°,360°),(2π-α)<0,符号为“-”。
所以(2π-α)α 上述的记忆口诀是: 4 / 10 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角 k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三内切,四余弦 还有一种按照函数类型分象限定正负: 函数类型 第一象限 第二象限 第三象限 第四象限 正弦 ............—............—........ 余弦 ............—............—........ 正切 ............—............—........ 5 / 10 余切 ............—............—........ 同角三角函数基本关系 同角三角函数的基本关系式 倒数关系: α·α=1 α·α=1 α·α=1 商的关系: ααααα ααααα 平方关系: 2(α)2(α)=1 12(α)2(α) 12(α)2(α) 同角三角函数关系六角形记忆法 六角形记忆法: 构造以"上弦、中切、下割;左正、右余、中间为模型。 6 / 10 1"的正六边形 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 两角和与差的三角函数公式 (α+β)αβαβ (α-β)αβαβ (α+β)αβαβ (α-β)αβαβ (α+β)=(αβ)/(1αβ) (α-β)=(αβ)/(1α·β) 二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) 2α=2αα 7 / 10 2α2(α)2(α)=22(α)-1=1-22(α) 2α=2α/[12(α)] 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) 2(α/2)=(1α)/2 2(α/2)=(1α)/2 2(α/2)=(1α)/(1α) 另也有(α/2)=(1α)αα/(1α) 万能公式 α=2(α/2)/[12(α/2)] α=[12(α/2)]/[12(α/2)] α=2(α/2)/[12(α/2)] 三倍角公式 三倍角的正弦、余弦和正切公式 3α=3α-4^3(α) 3α=4^3(α)-3α 3α=[3α^3(α)]/[1-3^2(α)] 8 / 10 三倍角公式联想记忆 ★记忆方法:谐音、联想 正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)) 余弦三倍角:4元3角 减 3元(减完之后还有“余”) ☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。 ★另外的记忆方法: 正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是"3倍"α, 无指的是减号, 四指的是"4倍", 立指的是α立方 余弦三倍角: 司令无山 与上同理 和差化积公式 三角函数的和差化积公式 αβ=2[(α+β)/2]·[(α-β)/2] αβ=2[(α+β)/2]·[(α-β)/2] αβ=2[(α+β)/2]·[(α-β)/2] αβ2[(α+β)/2]·[(α-β)/2] 积化和差公式 9 / 10 三角函数的积化和差公式 α·β=0.5[(α+β)(α-β)] α·β=0.5[(α+β)(α-β)] α·β=0.5[(α+β)(α-β)] α·β0.5[(α+β)(α-β)] 正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦 10 / 10 三角函数的公式。
小学生科学实验, 成都盐道街小学, 小学生晚餐, 聊城东昌中学, 文山大同中学, 榆林市第十中学, 高中物理论文,

Tags:

本文章来自网友上传,不代表本网站立场,转载请注明出处:https://www.puerjy.cn/69190.html
  • 站长推荐
热门标签