高等数学公式、定理 最全版 高数公式_教学资源|题库|学习文库-「普洱教育」

主页 > 公式大全 > 正文

高等数学公式、定理 最全版 高数公式

教学资源|题库|学习文库-「普洱教育」来源: https://www.puerjy.cn 2020-02-07 03:51公式大全 72573 ℃
高数公式
高等数学公式 导数公式: (tgx)sec2x(ctgx)csc2x(secx)secxtgx(cscx)cscxctgx(ax)axlna1(logax)xlna基本积分表: (arcsinx)11x21(arccosx)1x21(arctgx)1x21(arcctgx)1x2tgxdxlncosxCctgxdxlnsinxCsecxdxlnsecxtgxCcscxdxlncscxctgxCdx1xarctgCa2x2aadx1xalnx2a22axaCdx1axa2x22alnaxCdxxarcsinCa2x2a2ndx2seccos2xxdxtgxCdx2sin2xcscxdxctgxCsecxtgxdxsecxCcscxctgxdxcscxCaxadxlnaCxshxdxchxCchxdxshxCdxx2a2ln(xx2a2)C2Insinxdxcosnxdx00n1In2nx2a22xadxxaln(xx2a2)C22x2a2222xadxxalnxx2a2C22x2a2x222axdxaxarcsinC22a22三角函数的有理式积分: 2u1u2x2dusinx, cosx, utg, dx 21u21u21u2 一些初等函数: 两个重要极限: exex双曲正弦:shx2exex双曲余弦:chx2shxexex双曲正切:thxchxexexarshxln(xx21)archxln(xx21)11xarthxln21x三角函数公式: ·诱导公式: 函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α sinx lim1x0x 1 lim(1)xe2.718281828459045...x x sin cos tg -tgα ctgα ctg -ctgα tgα -ctgα ctgα tgα -ctgα ctgα -sinα cosα cosα cosα sinα sinα -sinα -ctgα -tgα -cosα -tgα -sinα -cosα tgα -cosα -sinα ctgα -cosα sinα -sinα cosα sinα cosα -tgα tgα -ctgα -tgα ·和差角公式: ·和差化积公式: sin()sincoscossincos()coscossinsintg()tgtg1tgtgctgctg1ctg()ctgctgsinsin2sin22sinsin2cossin22coscos2coscos22coscos2sinsin22cos ·倍角公式: sin22sincoscos22cos2112sin2cos2sin2ctg21ctg22ctg2tgtg21tg2 ·半角公式: sin33sin4sin3cos34cos33cos3tgtg3tg313tg2sintg21cos1cos            cos2221cos1cossin1cos1cossin  ctg1cossin1cos21cossin1cosabc2R ·余弦定理:c2a2b22abcosC sinAsinBsinC2 ·正弦定理: ·反三角函数性质:arcsinx2arccosx   arctgx2arcctgx 高阶导数公式——莱布尼兹(Leibniz)公式: (uv)(n)k(nk)(k)Cnuvk0nu(n)vnu(n1)vn(n1)(n2)n(n1)(nk1)(nk)(k)uvuvuv(n)2。k。 中值定理与导数应用: 拉格朗日中值定理:f(b)f(a)f()(ba)f(b)f(a)f()柯西中值定理:F(b)F(a)F()曲率: 当F(x)x时,柯西中值定理就是拉格朗日中值定理。弧微分公式:ds1y2dx,其中ytg平均曲率:K.:从M点到M点,切线斜率的倾角变化量;s:MM弧长。
sydM点的曲率:Klim. 23s0sds(1y)直线:K0;1半径为a的圆:K.a 定积分的近似计算: b矩形法:f(x)abba(y0y1yn1)nba1[(y0yn)y1yn1]n2ba[(y0yn)2(y2y4yn2)4(y1y3yn1)]3n 梯形法:f(x)ab抛物线法:f(x)a定积分应用相关公式: 功:WFs水压力:FpAmm引力:Fk122,k为引力系数 rb1函数的平均值:yf(x)dxbaa1均方根:f2(t)dtbaa空间解析几何和向量代数: b空间2点的距离:dM1M2(x2x1)2(y2y1)2(z2z1)2向量在轴上的投影:PrjuABABcos,是AB与u轴的夹角。Prju(a1a2)Prja1Prja2ababcosaxbxaybyazbz,是一个数量,两向量之间的夹角:cosicabaxbxjaybyaxbxaybyazbzaxayazbxbybz222222kaz,cabsin.例:线速度:vwcyazbzabccos,为锐角时, czax向量的混合积:[abc](ab)cbxcx代表平行六面体的体积。 平面的方程:

1、点法式:A(xx0)B(yy0)C(zz0)0,其中n{A,B,C},M0(x0,y0,z0)

2、一般方程:AxByCzD0xyz

3、截距世方程:1abc平面外任意一点到该平面的距离:dAx0By0Cz0DA2B2C2xx0mtxxyy0zz0空间直线的方程:0t,其中s{m,n,p};参数方程:yy0ntmnpzzpt0二次曲面:x2y2z

21、椭球面:2221abcx2y

22、抛物面:z(,p,q同号)2p2q

3、双曲面:x2y2z2单叶双曲面:2221abcx2y2z2双叶双曲面:222(马鞍面)1abc 多元函数微分法及应用 全微分:dzzzuuudxdy   dudxdydzxyxyz全微分的近似计算:zdzfx(x,y)xfy(x,y)y多元复合函数的求导法:dzzuzvzf[u(t),v(t)]    dtutvtzzuzvzf[u(x,y),v(x,y)]    xuxvx当uu(x,y),vv(x,y)时,duuuvvdxdy   dvdxdy xyxy隐函数的求导公式:FxFFdydyd2y隐函数F(x,y)0,  ,  2(x)+(x)dxFyxFyyFydxdxFyFxzz隐函数F(x,y,z)0, ,  xFzyFz FF(x,y,u,v)0(F,G)u隐函数方程组:   JGG(x,y,u,v)0(u,v)uu1(F,G)v1(F,G)    xJ(x,v)xJ(u,x)u1(F,G)v1(F,G)    yJ(y,v)yJ(u,y)微分法在几何上的应用: FvFuGGuvFvGv x(t)xxyy0zz0空间曲线y(t)在点M(x0,y0,z0)处的切线方程:0(t)(t)(t0)00z(t)在点M处的法平面方程:(t0)(xx0)(t0)(yy0)(t0)(zz0)0FyFzFzFxFxF(x,y,z)0若空间曲线方程为:,则切向量T{,,GGGxGGG(x,y,z)0yzzx曲面F(x,y,z)0上一点M(x0,y0,z0),则:

1、过此点的法向量:n{Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)}xx0yy0zz

03、过此点的法线方程:Fx(x0,y0,z0)Fy(x0,y0,z0)Fz(x0,y0,z0)方向导数与梯度: Fy}Gy

2、过此点的切平面方程:Fx(x0,y0,z0)(xx0)Fy(x0,y0,z0)(yy0)Fz(x0,y0,z0)(zz0)0fff函数zf(x,y)在一点p(x,y)沿任一方向l的方向导数为:cossinlxy其中为x轴到方向l的转角。ffijxy f它与方向导数的关系是:gradf(x,y)e,其中ecosisinj,为l方向上的l单位向量。
f是gradf(x,y)在l上的投影。l函数zf(x,y)在一点p(x,y)的梯度:gradf(x,y)多元函数的极值及其求法: 设fx(x0,y0)fy(x0,y0)0,令:fxx(x0,y0)A, fxy(x0,y0)B, fyy(x0,y0)CA0,(x0,y0)为极大值2ACB0时,A0,(x0,y0)为极小值2则:值ACB0时,      无极ACB20时,       不确定 重积分及其应用: f(x,y)dxdyf(rcos,rsin)rdrdDD曲面zf(x,y)的面积ADzz1ydxdyx22平面薄片的重心:xMxMx(x,y)dD(x,y)dDD,  yMyMy(x,y)dD(x,y)dDD 平面薄片的转动惯量:对于x轴Ixy2(x,y)d,  对于y轴Iyx2(x,y)d平面薄片(位于xoy平面)对z轴上质点M(0,0,a),(a0)的引力:F{Fx,Fy,Fz},其中:FxfD(x,y)xd(xya)2222,  Fyf3D(x,y)yd(xya)2222,  Fzfa3D(x,y)xd(xya)22322柱面坐标和球面坐标: xrcos柱面坐标:f(x,y,z)dxdydzF(r,,z)rdrddz,yrsin,   zz其中:F(r,,z)f(rcos,rsin,z)xrsincos2球面坐标:yrsinsin,  dvrdrsinddrrsindrddzrcos2 r(,)2F(r,,)rsindr0f(x,y,z)dxdydzF(r,,)rsindrdddd002重心:x1Mxdv,  y1Mydv,  z1Mzdv,  其中Mxdv转动惯量:Ix(y2z2)dv,  Iy(x2z2)dv,  Iz(x2y2)dv曲线积分: 第一类曲线积分(对弧长的曲线积分):x(t)设f(x,y)在L上连续,L的参数方程为:,  (t),则:y(t)Lxt22f(x,y)dsf[(t),(t)](t)(t)dt  ()  特殊情况:y(t) 第二类曲线积分(对坐标的曲线积分):x(t)设L的参数方程为,则:y(t)P(x,y)dxQ(x,y)dy{P[(t),(t)](t)Q[(t),(t)](t)}dtL两类曲线积分之间的关系:PdxQdy(PcosQcos)ds,其中和分别为LLL上积分起止点处切向量的方向角。
QPQP格林公式:()dxdyPdxQdy格林公式:()dxdyPdxQdyxyxyDLDLQP1当Py,Qx,即:2时,得到D的面积:Adxdyxdyydxxy2LD·平面上曲线积分与路径无关的条件:

1、G是一个单连通区域;

2、P(x,y),Q(x,y)在G内具有一阶连续偏导数,且减去对此奇点的积分,注意方向相反。·二元函数的全微分求积:QP在=时,PdxQdy才是二元函数u(x,y)的全微分,其中:xy(x,y)QP=。
注意奇点,如(0,0),应xy u(x,y)(x0,y0)P(x,y)dxQ(x,y)dy,通常设x0y00。曲面积分: 22对面积的曲面积分:f(x,y,z)dsf[x,y,z(x,y)]1z(x,y)z(x,y)dxdyxyDxy对坐标的曲面积分:,其中:P(x,y,z)dydzQ(x,y,z)dzdxR(x,y,z)dxdy号;R(x,y,z)dxdyR[x,y,z(x,y)]dxdy,取曲面的上侧时取正Dxy号;P(x,y,z)dydzP[x(y,z),y,z]dydz,取曲面的前侧时取正Dyz 号。
Q(x,y,z)dzdxQ[x,y(z,x),z]dzdx,取曲面的右侧时取正Dzx两类曲面积分之间的关系:PdydzQdzdxRdxdy(PcosQcosRcos)ds高斯公式: (PQR)dvPdydzQdzdxRdxdy(PcosQcosRcos)dsxyz高斯公式的物理意义——通量与散度:PQR散度:div,即:单位体积内所产生的流体质量,若div0,则为消失...xyz通量:AndsAnds(PcosQcosRcos)ds,因此,高斯公式又可写成:divAdvAnds斯托克斯公式——曲线积分与曲面积分的关系: (RQPRQP)dydz()dzdx()dxdyPdxQdyRdzyzzxxycosyQcoszR dydzdzdxdxdycos上式左端又可写成:xyzxPQRPRQPRQP空间曲线积分与路径无关的条件:, , yzzxxyijk旋度:rotAxyzPQR向量场A沿有向闭曲线的环流量:PdxQdyRdzAtds常数项级数: 1qn等比数列:1qqq1q(n1)n等差数列:123n 2111调和级数:1是发散的23n2n1级数审敛法:

1、正项级数的审敛法——根植审敛法(柯西判别法):1时,级数收敛设:limnun,则1时,级数发散n1时,不确定

2、比值审敛法:1时,级数收敛U设:limn1,则1时,级数发散nUn1时,不确定

3、定义法:snu1u2un;limsn存在,则收敛;否则发散。n 交错级数u1u2u3u4(或u1u2u3,un0)的审敛法——莱布尼兹定理: unun1如果交错级数满足su1,其余项rn的绝对值rnun1。limu0,那么级数收敛且其和nn绝对收敛与条件收敛: (1)u1u2un,其中un为任意实数;(2)u1u2u3un如果(2)收敛,则(1)肯定收敛,且称为绝对收敛级数;如果(2)发散,而(1)收敛,则称(1)为条件收敛级数。 1(1)n调和级数:n发散,而n收敛;1  级数:n2收敛;p1时发散1  p级数:  npp1时收敛幂级数: 1x1时,收敛于1x1xx2x3xn  x1时,发散对于级数(3)a0a1x a2x2anxn,如果它不是仅在原点收敛,也不是在全xR时收敛数轴上都收敛,则必存在R,使xR时发散,其中R称为收敛半径。xR时不定1 0时,R求收敛半径的方法:设liman1,其中an,an1是(3)的系数,则0时,Rnan时,R0函数展开成幂级数: f(x0)f(n)(x0)2函数展开成泰勒级数:f(x)f(x0)(xx0)(xx0)(xx0)n2。n。
f(n1)() 余项:Rn(xx0)n1,f(x)可以展开成泰勒级数的充要条件是:limRn0n(n1)。f(0)2f(n)(0)nx00时即为麦克劳林公式:f(x)f(0)f(0)xxx2。n。一些函数展开成幂级数: m(m1)2m(m1)(mn1)nxx   (1x1)2。
n。 2n1x3x5xsinxx(1)n1   (x)3。5。(2n1)。
(1x)m1mx欧拉公式: eixeixcosx2 eixcosxisinx   或ixixsinxee2三角级数: a0f(t)A0Ansin(ntn)(ancosnxbnsinnx)2n1n1其中,a0aA0,anAnsinn,bnAncosn,tx。正交性:1,sinx,cosx,sin2x,cos2xsinnx,cosnx任意两个不同项的乘积在[,]上的积分=0。
傅立叶级数:  a0f(x)(ancosnxbnsinnx),周期22n11(n0,1,2)anf(x)cosnxdx   其中1b(n1,2,3)nf(x)sinnxdx   112122835 111224224262正弦级数:an0,bn余弦级数:bn0,an11121222(相加)623411121222(相减)12234f(x)sinnxdx  n1,2,3 f(x)b0 2nsinnx是奇函数20f(x)cosnxdx  n0,1,2 f(x)a0ancosnx是偶函数2周期为2l的周期函数的傅立叶级数: a0nxnxf(x)(ancosbnsin),周期2l2n1lll1nxdx   (n0,1,2)anf(x)coslll其中lb1f(x)sinnxdx   (n1,2,3)nlll 微分方程的相关概念: 一阶微分方程:yf(x,y) 或 P(x,y)dxQ(x,y)dy0可分离变量的微分方程:一阶微分方程可以化为g(y)dyf(x)dx的形式,解法:g(y)dyf(x)dx  得:G(y)F(x)C称为隐式通解。dyyf(x,y)(x,y),即写成的函数,解法: dxxydydududxduy设u,则ux,u(u),分离变量,积分后将代替u,xdxdxdxx(u)ux齐次方程:一阶微分方程可以写成即得齐次方程通解。一阶线性微分方程: dy

1、一阶线性微分方程:P(x)yQ(x)dxP(x)dx当Q(x)0时,为齐次方程,yCeP(x)dxP(x)dx当Q(x)0时,为非齐次方程,y(Q(x)edxC)e dy

2、贝努力方程:P(x)yQ(x)yn,(n0,1)dx全微分方程: 如果P(x,y)dxQ(x,y)dy0中左端是某函数的全微分方程,即:uudu(x,y)P(x,y)dxQ(x,y)dy0,其中:P(x,y),Q(x,y) xyu(x,y)C应该是该全微分方程的通解。二阶微分方程: f(x)0时为齐次d2ydy P(x)Q(x)yf(x),2dxdxf(x)0时为非齐次二阶常系数齐次线性微分方程及其解法: (*)ypyqy0,其中p,q为常数;求解步骤:

1、写出特征方程:()r2prq0,其中r2,r的系数及常数项恰好是(*)式中y,y,y的系数;

2、求出()式的两个根r1,r2

3、根据r1,r2的不同情况,按下表写出(*)式的通解:r1,r2的形式 两个不相等实根(p24q0) 两个相等实根(p24q0) 一对共轭复根(p24q0) (*)式的通解 yc1er1xc2er2x y(c1c2x)er1x yex(c1cosxc2sinx) r1i,r2i4qp2 p,22二阶常系数非齐次线性微分方程 ypyqyf(x),p,q为常数f(x)exPm(x)型,为常数;f(x)ex[Pl(x)cosxPn(x)sinx]型 高等数学定理大全 第一章 函数与极限

1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。

2、数列的极限定理(极限的唯一*)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界*)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。

3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号*)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。


4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.

5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
单调有界数列必有极限。

6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:

1、在点x=x0没有定义;

2、虽在x=x0有定义但lim(x→x0)f(x)不存在;

3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。
如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。
定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。 定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间Iy={y|y=f(x),x∈Ix}上单调增加或减少且连续。
反三角函数在他们的定义域内都是连续的。 定理(最大值最小值定理)在闭区间上连续的函数在该区间上一定有最大值和最小值。
如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值。 定理(有界性定理)在闭区间上连续的函数一定在该区间上有界,即m≤f(x)≤M.定理(零点定理)设函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号(即f(a)×f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ
1、导数存在的充分必要条件:函数f(x)在点x0处可导的充分必要条件是在点x0处的左极限lim(h→-0)[f(x0+h)-f(x0)]/h及右极限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左导数f-′(x0)右导数f+′(x0)存在相等。

2、函数f(x)在点x0处可导=>函数在该点处连续;函数f(x)在点x0处连续≠>在该点可导。即函数在某点连续是函数在该点可导的必要条件而不是充分条件。


3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数。

4、函数f(x)在点x0处可微=>函数在该点处可导;函数f(x)在点x0处可微的充分必要条件是函数在该点处可导。
第三章 中值定理与导数的应用

1、定理(罗尔定理):如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且在区间端点的函数值相等,即f(a)=f(b),那么在开区间(a,b)内至少有一点ξ(a<ξ
2、定理(拉格朗日中值定理):如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么在开区间(a,b)内至少有一点ξ(a<ξ

3、定理(柯西中值定理):如果函数f(x)及F(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且F’(x)在(a,b)内的每一点处均不为零,那么在开区间(a,b)内至少有一点ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f’(ξ)/F’(ξ)成立。

4、洛必达法则应用条件只能用与未定型诸如0/

0、∞/∞、0×∞、∞-∞、

00、1∞、∞ 0等形式。


5、函数单调性的判定法:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么:(1)如果在(a,b)内f’(x)>0,那么函数f(x)在[a,b]上单调增加;(2)如果在(a,b)内f’(x)<0,那么函数f(x)在[a,b]上单调减少。
如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’(x)=0的根及f’(x)不存在的点来划分函数f(x)的定义区间,就能保证f’(x)在各个部分区间内保持固定符号,因而函数f(x)在每个部分区间上单调。

6、函数的极值:如果函数f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x, f(x)f(x0)均成立,就称f(x0)是函数f(x)的一个极小值。
在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点(导数为0的点),但函数的驻点却不一定是极值点。 定理(函数取得极值的必要条件):设函数f(x)在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’(x0)=0.定理(函数取得极值的第一种充分条件)设函数f(x)在x0一个邻域内可导,且f’(x0)=0,那么:(1)如果当x取x0左侧临近的值时,f’(x)恒为正;当x去x0右侧临近的值时,f’(x)恒为负,那么函数f(x)在x0处取得极大值;(2)如果当x取x0左侧临近的值时,f’(x)恒为负;当x去x0右侧临近的值时,f’(x)恒为正,那么函数f(x)在x0处取得极小值;(3)如果当x取x0左右两侧临近的值时,f’(x)恒为正或恒为负,那么函数f(x)在x0处没有极值。
定理(函数取得极值的第二种充分条件):设函数f(x)在x0处具有二阶导数且f’(x0)=0,f’’(x0)≠0那么:(1)当f’’(x0)<0时,函数f(x)在x0处取得极大值;(2)当f’’(x0)>0时,函数f(x)在x0处取得极小值;驻点有可能是极值点,不是驻点也有可能是极值点。

7、函数的凹凸性及其判定:设f(x)在区间Ix上连续,如果对任意两点x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凹的;如果恒有f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么称f(x)在区间Ix上图形是凸的。 定理:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内具有一阶和二阶导数,那么(1)若在(a,b)内f’’(x)>0,则f(x)在闭区间[a,b]上的图 形是凹的;(2)若在(a,b)内f’’(x)<0,则f(x)在闭区间[a,b]上的图形是凸的。 判断曲线拐点(凹凸分界点)的步骤:(1)求出f’’(x);(2)令f’’(x)=0,解出这方程在区间(a,b)内的实根;(3)对于(2)中解出的每一个实根x0,检查f’’(x)在x0左右两侧邻近的符号,如果f’’(x)在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点。 第四章 不定积分

1、原函数存在定理:定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
分部积分法:如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u.

2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 第五章 定积分

1、定积分解决的典型问题:(1)曲边梯形的面积(2)变速直线运动的路程

2、函数可积的充分条件定理:设f(x)在区间[a,b]上连续,则f(x)在区 间[a,b]上可积,即连续=>可积。 定理:设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。


3、定积分的若干重要性质性质:如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0. 推论:如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx.推论:|∫abf(x)dx|≤∫ab|f(x)|dx.性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。


4、关于广义积分设函数f(x)在区间[a,b]上除点c(a
1、多元函数极限存在的条件:极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。
反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。例如函数:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠0

2、多元函数的连续性定义:设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。 性质(最大值和最小值定理):在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。
性质(介值定理):在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。


3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值f(P)趋于f(P0),但不能保证点P按任何方式趋于P0时,函数值f(P)都趋于f(P0)。


4、多元函数可微的必要条件:一元函数在某点的导数存在是微分存在的充 分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导。

5、多元函数可微的充分条件定理(充分条件):如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。 6.多元函数极值存在的必要、充分条件定理(必要条件):设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。
定理(充分条件):设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)AC-B2>0时具有极值,且当A<0时有极大值,当A>0时有极小值;(2)AC-B2<0时没有极值;(3)AC-B2=0时可能有也可能没有。

7、多元函数极值存在的解法:(1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。 (2)对于每一个驻点(x0,y0),求出二阶偏导数的值A、B、C.(3)定出AC-B2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。
注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内。 第八章 二重积分

1、二重积分的一些应用曲顶柱体的体积曲面的面积(A=∫∫√[1+f2x(x,y)+f2y(x,y)]dσ) 平面薄片的质量平面薄片的重心坐标(x=1/A∫∫xdσ,y=1/A∫∫ydσ;其 中A=∫∫dσ为闭区域D的面积。 平面薄片的转动惯量(Ix=∫∫y2ρ(x,y)dσ,Iy=∫∫x2ρ(x,y)dσ;其中ρ(x,y)为在点(x,y)处的密度。
平面薄片对质点的引力(FxFyFz)

2、二重积分存在的条件:当f(x,y)在闭区域D上连续时,极限存在,故函数f(x,y)在D上的二重积分必定存在。

3、二重积分的一些重要性质性质如果在D上,f(x,y)≤ψ(x,y),则有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性质设M,m分别是f(x,y)在闭区域D上的最大值和最小值,σ是D的面积,则有mσ≤∫∫f(x,y)dσ≤Mσ。 性质(二重积分的中值定理):设函数f(x,y)在闭区域D上连续,σ是D的面积,则在D上至少存在一点(ξ,η)使得下式成立:∫∫f(x,y)dσ=f(ξ,η)*σ

4、二重积分中标量在直角与极坐标系中的转换把二重积分从直角坐标系换为极坐标系,只要把被积函数中的x,y分别换成ycosθ、rsinθ,并把直角坐标系中的面积元素dxd 高数公式。
小学三年级班主任工作总结, 南京市金陵中学, 江苏省如皋中学, 郑州回民中学, 扶轮中学, 安徽省潜山野寨中学, 侯集中学, 初中学历考大专,

Tags: 高数公式

本文章来自网友上传,不代表本网站立场,转载请注明出处:https://www.puerjy.cn/30964.html
  • 站长推荐
热门标签