《用配方法推导一元二次方程的求根公式》教学设计 根公式_教学资源|题库|学习文库-「普洱教育」

主页 > 公式大全 > 正文

《用配方法推导一元二次方程的求根公式》教学设计 根公式

教学资源|题库|学习文库-「普洱教育」来源: https://www.puerjy.cn 2020-02-18 18:47公式大全 626048 ℃
根公式
9.2-3《用配方法推导一元二次方程的求根公式》教学设计 南郑县铁佛中学蒋晓航 一、教学内容解析 1.具体内容: 《用配方法推导一元二次方程的求根公式》这个内容在北师大版教材中对应的是九年级上册第二章第三节《用公式法求解一元二次方程》.本节主要研究一元二次方程的公式解法,一元二次方程的求根公式是用配方法得到的,可以说,公式法是配方法的一般化和程式化,利用求根公式可以更为便捷地解一元二次方程. 本节课的教学内容包括以下三个方面: ①承接上节内容,提出用配方法求解方程ax2+bx+c=0(a≠0)的问题,进而推导求根公式; ②用公式法求解一元二次方程,同时体会用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程; ③通过对b2-4ac的讨论,得出根的判别式与方程根的情况之间的关系. 《课标》中对本节课的要求是能用公式法解数字系数的一元二次方程,会用一元二次方程个根的判别式判别方程是否有实数根和两个实数根是否相等. 2.教育价值: 在思想方法上,求根公式的推导运用了配方法,其基本思想是降次,通过配方法转化为可直接开方的形式,推导过程中还涉及分类讨论的思想.数学思想方法凝聚着数学的精髓和灵魂,尽管学生走上社会后,数学知识似乎渐渐淡忘了,但留存的应是那种铭刻在心头的数学思想、数学思维方式. 从运算的角度看,公式包含了初中阶段所学过的全部六种代数运算:加、减、乘、除、乘方、开方,体现了公式的和谐统一.各级运算的顺序自动决定了一元二次方程的解题顺序.开平方运算不是总能进行的,要根据判别式的符号来判断方程是否有实数根,如果有实数根,则由三个系数来确定.通过运算可以完美地解决根的存在性、根的个数、根的求法三个问题,可以说是“万能”求根公式.它向我们展示了抽象性、一般性和简洁性等数学的美和魅力. 3.与相关内容的联系: 方程是初中数学的核心概念,在初中数学中占有重要的地位.在学习一元二次方程之前学生已经学会了解一元一次方程、二元一次方程和分式方程等,积累了一定的解方程的经验,体会到解分式方程时需要通过去分母将分式方程转化为整式方程,渗透了转化的数学思想,为研究一元二次方程的解法奠定了基础.,同时一元二次方程的“公式法”是在学习了直接开方法和配方法之后必须掌握的另一种解一元二次方程的方法,是配方法的一般化和程式化,利用它可以更便捷地解一元二次方程.另外,一元二次方程的解法为高中阶段学习二元二次方程组和一元高次方程的解法提供了方法的引领,发挥着重要的作用. 从知识的发展来看,学生通过一元二次方程的学习,不仅是对已经学过的实数、整式、二次根式等知识的巩固,也为今后学习二次函数以及高中阶段的算法等知识奠定基础,起到了承上启下的作用. 二、教学目标 1.经历一元二次方程的求根公式的推导过程,领悟其基本思想(降次化归)与基本方法(配方法); 2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况,能够运用公式法求解一元二次方程(数字系数); 3.通过推导求根公式,加强推理技能训练,发展逻辑思维能力和善于发现问题的思维素质. 三、学生学情分析 学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;学生原有的认知结构中已有的知识是直接开平方法解一元一次方程以及用配方法解数字系数的一元二次方程,学生通过直接开平方法、配方法解一元二次方程的学习,对于降次化归的理论依据(开平方)以及基本思路(将一元二次方程转化为两个一元一次方程)已比较熟悉.这节课可以借助学生已有的配方经验,从具体到抽象,得到一元二次方程一般形式的解,即求根公式. 但是九年级学生的思维水平处于具体形象思维向抽象思维过渡阶段,对于一般形式的一元二次方程求解过程以及公式法求解一元二次方程本质的理解仍然存在一定的困难.具体体现在以下几个方面: 1.学生独自运用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式的过程会遇到困难. 2.在用配方法进行公式推导时,忽视对b2-4ac取值的讨论是学生的易错点,也是难点,此讨论又是分类思想的渗透,判别式的应用也在此得以体现. 3.对xbab24ac 的化简也会存在问题,有些学生会对由4a2bb24ac的变化不理解. bb24ac到xx2a2aa4a4.用公式法求解一元二次方程本质是将解一元二次方程转化为一个代数式求值的过程,只要确定系数a、b、c的值,代入公式就能求出方程的根,学生对这个本质的理解会存在困难. 四、教学策略分析 策略1——课前通过用配方法解数字系数的一元二次方程,回忆用配方法解一元二次方程的一般步骤,为本节课中的用配方法推导一元二次方程的求根公式奠定理论基础,同时为了降低学生解字母系数的一元二次方程的难度,将推导的过程分为两个环节,第一环节以填空题的形式,让学生明确二次项系数化为
1、移项、配方等过程,掌握每一步的具体做法以及变形的依据.第二环节则采用小组讨论和全班共同探索的方式进行,这样就解决了学生独立推导求根公式所面临着种种困难的问题. 策略b2b2-4ac2——当推导到这一步时,通过设计问题串引(x)22a4a发学生的思考,逐步意识到只有当配方的结果是一个非负数时才能进行开方运算,于是针对b2-4ac4a2展开进一步的探讨,渗透分类讨论的数学思想,此环节采用小组交流的方式进行,避免了学生独立思考时思维的局限性. 策略3——对xbab24ac 进行化简时可能会出现两种情况,一部4a2b2-4ac2a分学生会误认为b24ac4a2的化简结果就是,没有考虑到4a2开方的结bb24ac果是2a,缺少分类讨论的思想;还有一部分是对x不2a2a会化简,为了突破这个难点,在教学设计时采用采用多媒体课件及板书的结合,以填空的形式引发学生的思考, ∵a≠0,当a>0时xbab24ac ,2a当a<0时xbab24ac-2ab24ac∴2a无论a>0还是a<0 ,都有xbab24ac ,这样也就解决了学生在推导公式过程中的又一个难2a题. 策略4——为了强化学生对用公式法求解一元二次方程本质的理解,在教学活动中不是直接告诉学生这个过程就是代数式求值的过程,而是通过具体的例题展示和练习让学生自己经历先确定系数a、b、c,再判断b2-4ac,最后代入公式求解一元二次方程的过程,亲身感受到用公式法求解一元二次方程本质就是一个代数式求值的过程.另外,为了便于学生理解,教学环节中又设计了一个程序图来表示用公式法解一元二次方程的步骤,更能直观形象地反映这一本质,同时揭示了“神器”的奥秘,引申出高中阶段要学习的算法知识,体现了知识的前后联系. 五、教学过程 第一环节 情境引入 活动内容:数学竞赛,比一比看谁做的又快又准. 用配方法解下列方程:(1)2x2-7x+3=0 (2)2x2+5x+4=0 找男生代表和女生代表到前面板演,其余同学在题单上运算. 设计意图:与本节课有实质性联系的内容是前一节的配方法,以此为新知识的生长点呈现练习题:用配方法解两个上述方程,即激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.使学生认识到每一个数字系数的一元二次方程都可以用配方法来求解,同时体验到配方法的局限性.由此产生疑难和困惑,感悟到具体的配方法已经不够了. 思考:
(1)回忆用配方法解一元二次方程的基本思路是什么。体现了哪种数学思想。 设计意图:通过提问,一方面加深对学生数学思想方法的渗透,另一方面,与本节课公式法解一元二次方程的本质形成对比,增强学生对知识的理解和掌握.

(2)用配方法解一元二次方程的一般步骤有哪些。
设计意图:复习用配方法解一元二次方程的步骤为后面用配方法推导一元二次方程的求根公式做铺垫.

(3)所有的一元二次方程都能用配方法求解吗。
你喜欢配方法吗。为什么。


(4)能否有更简便和更一般的方法求一元二次方程的根呢。 出示 “计算神器”,指出只要知道a、b、c就能很快判断出方程根的情况,并且很快计算出方程的根.用“计算神器”计算上面两个一元二次方程,并让学生随机说出一个一元二次方程,进行求解. 设计意图:借助“计算神器”,一方面激发学生学习数学的兴趣,调动积极性;另一方面,使学生初步感受到一元二次方程的根的情况就是由系数a、b、c决定的.特别是计算神器的原理又是高中阶段的算法的程序图,这样处理体现知识的前后联系. 第二环节 新知探究 活动
1:推导求根公式. 用配方法解一元二次方程:ax2+bx+c=0(a≠0) 学生阅读题单上小亮同学的用配方法解方程ax2+bx+c=0(a≠0)时的一部分过程,请将横线上的部分补充完整,并指出每一步的依据. 解:∵a≠0 ∴方程两边都除以a 得x2bxc0 aa ,得 x2bxc aa 配方,得 x2bc22x( )( ) aa2(x____)即: = 思考:

(1)按照配方法的步骤,下一步应该做什么呢。


(2)现在能直接两边开平方吗。如果能开平方,写出开平方后的结果,如果不能,说明理由.(学生小组内讨论)

(3)什么情况下 b引导学生分析 24ac。
024a∵ a≠0 ∴ 4a2>0 要使b24ac 024a只要 b2-4ac≥0即可. 当b2-4ac≥0时,两边开平方取“±” 得: bb24acx4a2 abb24acx4a2进行化简呢。

(4)如何对a(学生先独立思考再小组交流讨论) PPT呈现:对xbb4ac化简结果进行分析 2a4a2 ∵a≠0 当a>0时xb当a<0时xbaab24ac 2ab24ac-2ab24ac 2a2∴无论a>0还是a<0 ,都有xbb4ac a2a最后得出xbb24ac 2a设计意图:由于用配方法推导求根公式是本节课的一个难点,为了突破这个难点,于是将公式的推导过程分为两个部分,第一部分,只要学生知道配方法的步骤及每一步对应的依据就能很快完成推导过程,但bb24acx4a2的化简结果的讨论是后一部分对开方的条件的判断以及对a都是本节课上学生的困难所在,于是采用多媒体课件及板书的结合,以填空的形式引发学生的思考,大大降低了推导公式的难度,达到让学生跳一跳就能摘到桃子的效果.

(5)如果b2-4ac<0时,会出现什么问题。 bb24acx2a归纳:我们把称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法. 设计意图:理解一元二次方程求根公式中各字母代表的意义及条件,理解公式的结构特征,突出数学问题的本质. 活动
2:典例示范. 例:用公式法解方程:2x2-7x +3=0 板书示范 解:这里 a=2, b=-7, c=3 ∵b2-4ac=(-7)2-4×2×3=25>0 ∴x(7)2575 224即x13,x21 2思考:例题与第一环节中的第

(1)题对比,哪种解法更简捷。 设计意图:回到情境中的练习,运用求根公式解方程2x2-7x +3=0,使学生体会到求根公式的优越性,感悟从特殊到一般、发现提出问题的方法. 请模仿例题完成下面的做一做 做一做:用公式法解下列方程

(1)4x2+1= 4x

(2)2x²+5x+4=0 思考:

(1)第

(2)题与第一环节中的第

(2)题对比,哪种解法更简捷。

(2)通过例题与练习题的学习,请思考用公式法求解一元二次方程的一般步骤有哪些。


(3)观察这三道题,你还有什么发现。
归纳: 对于一元二次方程ax2+bx+c=0(a≠0), 当b2-4ac>0时,一元二次方程 实数根; 当b2-4ac=0时,一元二次方程 实数根; 当b2-4ac<0时,一元二次方程 实数根. 一元二次方程ax2+bx+c=0(a≠0)的根的情况由b2-4ac来判定,我们把b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ来表示. 设计意图:通过解方程使学生进一步体会求根公式的实质是代数式求值的过程,并归纳用求根公式解一元二次方程的基本思路.使学生运用求根公式解方程的同时,体验判别式与根的个数的关系,特别是判别式小于0时直接得到无实数根而不用代入求根公式,概括出在用求根公式解一元二次方程时可以先确定判别式的值代入求根公式,从而丰富和优化学生的认知结构. 第三环节 巩固应用 1.判断下列方程根的情况:

(1)4x2+4x+5=0

(2)3x²+7x=0

(3)9x2=6x-1

(4)2x(x-1)=-3 2.上述方程如果有解,求出方程的解. 设计意图:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度. 第四环节 感悟收获 谈谈本节课的收获和体会。你还有哪些问题。 学生发言,互相补充,教师点评完善. 既要关注知识的整理与归纳,更要关注本节课研究问题的过程以及运用的数学思想方法. 设计意图:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,引导学生建立知识之间的内在联系,概括本节课的核心知识及运用的数学思想和研究方法,旨在使学生生成组织良好的数学认知结构网络.另外,用程序图表示用公式法解一元二次方程的步骤,揭开神器的秘密,学生的好奇心得到满足. 第五环节 当堂检测 1.一元二次方程y2+3y-4=0的根的情况为( ) A.没有实数根 B.有两个相等的实数根 C.有两个不相等的实数根 D.不能确定 2.已知关于x的一元二次方程x²+2x+a=0有两个相等的实数根,则a的值是( ) A. 1 B. -1 C. 11 D.  443.用公式法解方程 4x2+9=12x 设计意图:紧扣目标点设计达标测评题,全面了解学生学习水平,及时发现学生认识中存在的问题,给予有效指导,保证当堂落实. 第六环节 布置作业 必做题:习题2.5 知识技能 第

1、

2、3题 选做题:尝试用不同种方法解一元二次方程2x²-3x+1=0,通过解答过程谈一谈每种解法的优势与不足. 六、教学反思 本节课的设计目标明确,重点突出,课前以数学竞赛(用配方法解一元二次方程)引入,调动了学生学习数学的积极性,同时激活了学生头脑中与新知识密切相关的已有知识经验,又巩固了配方法.公式的推导过程本来是本节课的难点所在,课前设计的各种为了突破难点的策略都发挥了极大的作用,学生在问题的引导下,同伴的互助下很顺利地推导出了一元二次方程的求根公式.公式的训练、落实有效,对判别式的归纳从特殊到一般思路很清晰,归纳也条理. 在整个课堂教学活动中,不仅关注数学知识与能力的发展,同时也重视数学思想方法的渗透;不仅有学生独立思考解决问题的环节,同时也关注了学生之间的合作交流,培养了学生之间的合作精神,不仅注重了对学生基础知识和基本技能的评价,同时又注重了对学生情感态度的评价. 根公式。
小学六年级数学下册, 北师大实验中学, 航天中学, 虎山中学, 东莞虎门中学, 长沙高中排名,

Tags: 根公式

本文章来自网友上传,不代表本网站立场,转载请注明出处:https://www.puerjy.cn/236412.html
  • 站长推荐
热门标签